Available online at www._sciencedirect.com

- i P

2% ScienceDirect

Rl

Expert Systems
with Applicatios

Expert Systans with Aplications 32 (2007) 832-840

weiw . elsevier oo/ locate/eswa

Diagnosis using a first-order stochastic language that lesrms

Chayan Chaekrabarti *, Roshan Rammohan, Gecrge F. Luger

Departmert of Computer Sciere, Thiversity of New Mexdco, Albaguerque, NM 87131, United Stakes

Arstract

We have created a dlagnostic/prognestic softwere tool for the analysis of complex systers, such asmonitoring the “naxming heslth’
of helioopter rotor svstars. Although our sofiware isnot vet deploved for resl~tine in-flight diagnosis, we have successfully analyvzed the
data s=t= of actual helioooter rotor failres suclied tous by the US Navy. In thispaper, we discuss both adtics] technicues sumporting
the design of our stodhestic diagnostic system as well as issues related to its fill deployment. We also present four exanples of i use.

Our dizgnestic system, @lledDBAYES, iscamosed of a logic-kased, first-crder, and Turing-canplete set of software tools for sto-
destic mdeling. We use this language farmodeling tire-seriss data supplied by senscrs on mechanical systars. The inferexs scheme
for these software tools ishased on a variant of Bearl's loopy beElief propagation algorithm [Berdl, P. (1988) . Proekdlistic ressaning in
sl licert systans: Networks of plasible inferare. San Frencisoo, CA: Morgan Kaufimann] . Cur language ombtains verishles that can
capture general classes of sitvabions, evwnts, and reladioxhizs. A Turing-camplete language is able to reason about potatially infnite
dlasses and sihetios, similsr to the amlysis of dynamic Bayesian networks. Since the inference algorithm ishased on a verdant of loopy
belief propagation, the language includes expectation maxdmization type leaming of porameters in themodeled domain. In thispaper we
lriefly present the thearsrical fondations for our fIst-arder stodestic Tanguage and then dennstrate tire-sarissmodel ing and leaming

in the context of failt dagnosis.
© 2006 Elsevier Ltd. All rights ressrved.
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1. Inoduction

The paper presaits the results of our eforts in the aral-
vals and diagnosis of complex sinations, such as those
found indata from sensors attached tovaricus components
of helicpter rotor systans. We have been working for the
past four years in the application of a first-ordar stechastic
modeling language for this and similar dorains. W e fesl
that a frst-arder and Turing-camplete stochastic system
is gppropriate for these tasks since it supports the creation
of general vardable based nile relatianships (the expressive
power of the first-order predicare calanlus) as well as sup-
ports Gwith filly implemented reawrsion) tire-saries analy—
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gs. This paper descrites these softwere tools and the
methodology used to address the real time diagnosis of
the tireseries data of the heliompter yotor systams.

Our resesrch began with NSF suppart to the third
author for developing tools for diagnosis using stodhastic
aporoaches. The rexult of this resemrch was the cresrion
{InOCAML) of a st of teols for diagnosis and prognosis
Pless & Luger, 2001, 2003). These stochastic software tools
were both first—arder and Turing—camplete, Subsequent to
that effcrt the thivd author was also awarded SBIR and
STTR centracts from the US Navy {(through a small soft-
ware company in Albuguergee, NM, Management Sci-
exes, Ire.) to develop a Java based sofftwere toolkdt for
performing stochastic modeling. As part of this contrect,
the U8 Navy suplied to the authors reel-time sensor data
from heliogpter rotor systams . The applictia of our tool-
kit to this dara, along with sevaral other escanples of diag-
nosis/mrogncsis Is the theme of this paper.
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The iceal next steo far our current softwere willbe o
embad it in the confrol systems thet monity complex
devices. But this will requive firther developmet, includ-
ing the applicatio of our algorithrs t more data sets
and creating the appropriate software for integrating these
glgorithms into edsting flicht control systams. Qur con-
cluding section presents these issues Rrther.

Section 2 of this peper ¢ives a vief oerview of the
theareticel issues supperting the development of our Jogic~
besed stechastiomoddling language. In Section 3, we rres-
ent a divect agplication of cur software to tine~series data
for the purpose of fallt dagnosis. W e show that the fully
recurrsive nature of our language is ideal for supporting
variants of hidden Markov models doing time-series
analysis.

Because our inference scheme iskased on a variant of
Pearl’s loopy belief propagatian Peaxd, 1988) it isalso ide-
ally suited for expectation maximization type leeming, We
demonstrate this in fitting parametars to components of a
stochastic model. The learnirg of model components is
described in Section 4.

Firelly, in Secticn 5 we present our thoughts on the
resserch/applicarion isses thet ramein b this poject.
The oxrat Java version of our software is available from
the authors.

2. DBAYES: A logictased stochastic modeling language

In this sectimwe hrilefly describe the formal foundations
of our logic-tesed stochasticmedeling language. W e have
extended the Bayesian logic programming approach of
Rersting and D e Raedr (2000) and have spacizglized the
Kerstingand D e Raedt regresentatical formalismby sug-
gesting that product distribitions are an efective combin-
ing nile for Horn clanse heads. We have also extended
the Kersting and D e Raedt language by adding learmable
distrihirias. To implement lemming, we use a refmement
of Tesxl’s (1988) loopy kelief propagation algorithm for
Irference. W e have bilt a message pessing and cycling—
thus the texrm ‘‘logy” —algorithm kbased on expectariom
maximization or EM pempster, Iaird, & Rubin, 1877)
far estimating the values of parameters of models hailt in
our systam. Further detils of this learming corponent
are presented in Section 4. W e have also added additional
uHiNHes to our logic language inchuding second-order unifi-
cation and eguality predicates.

A number of researchers have proposed logicbased reo-
resantations for stodestic modeling., These first-order
extensions toRayesianNetworks inchude probelitistc logic
programs Ngo & Haddawy, 1997) and relatiaal probalbi-
lignic models Getoor, Friedman, Koller, & Pfeffer, 2001
Koller & Pfeffar, 1998). The paper by Kerstirg and De
Raedt (2000) omtains a swrvey of these logic-kased
approaches. Anotherapproach to the regresentation proo-
lem for stochastic inference is the extension of the usual
propogiticrel nodes far Bayesian inference to the more
geeral language of frst-order logic. Ssveral researchers

Kersting & D e Raedt, 2000; Ng & Subrshmanian, 1992;
Ngc & Haddawy, 1997) have proposed forms offst-ader
logic for the representation of prolkaia listic systare.

Kersting and D e Raedt (2000) associate frst-oarder rules
withuncertainty parametars as the besis for creating Bayves-
izn networks as well as more complex models, In their
paper Bayesisnlogic Programs'’, Kerstingand De Raedt
adract a kemel for dewrloping prokabilistc logic pro—
grams. They replace Horn clauses with conditional proba-
Hility formilas. For example, irstead of saying that x is
implied by v and z, that is, x <- v, z they write thet x
isconditionedony and z, ar, x | v, z . They then annctate
these conditions] egressios with the approoriate prooa-
hility dsrdkations.

Our resesrch also follovs Kersting and De Raedt (2000)
as to the esic rapresentatrion stnrore of the langusge. A
sentence In the language is of the form

head | bodyy, bodyz, ..., bodys = [D1, D2/ --- Dn)

The size of the caditional probaaility takle ) at the
end of the sentence Is equal to the arity {(number of states)
of the head times the product of the arities of the terms n
the hody. The prolsdlities are manral Iy indexed over the
states of the head and the dlauses hh the body, but are
shown here with a sirgle index for simdlicity. For exanple,
suppose X isa predicate that isvalued over {red,green,
blue} andy IsBoolean.P { | v} isdefined by the sentence

x|y =1[[0.1, 0.2,0.7], [0.3, 0.3, 0.4]]

here shown with the strichre over the states of X and v .
Terms (such as i and y) can be fill predicates with struc-
tire and cmtain PROLOG shie veriddes. For example
the senteyea (X) = 0.5,0.5] indicates that a iz (niver-
sy equally likely to have elther one of two values.

IEwe want a query to be aile to mnify withmore than

cne rie hesd, some form of combining function is
required. Kersting and De Raedt (2000) allow for general
carbining fimcticns, vhile the loopy logic language
restrices this corbining function © cone that issinple, use-
fil, and works well with the gslected inferere algadithm.
Our choice for carbining sentences isthe product distribi-
tim. For example, suppose there are two sinple rulss
(facts) about scme Boolean predicate a, and one says that
a Istrue with proebility 0.4, the other sagys it is true
with probability ¢.7. The resilting probability fora ispro-
porticnal to the product of the two. Thus, a Istrue pro-
portional to 0.4x 0.7 and a is false proporticazl to
0.6x 0.3. Normelidry, a istrue with probebilityrof slbout
0.61. Thus, the ovezll distribatian defined by a database n
the language is the normalized product of the disdhiticns
defined for all of its sentences.

Cne advantage ofusing thisproduct nile for defiming the
resalting distribution is that doservations and probauslistic
riles are now handled wmiformly. An chservation isrepre-
sented by a simple fact with a prokability of 1.0 for the
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variahle to take the dheerved valie. Thus, a fact issinply a
Horn clausewithno body and a sirgular probability dstri~
ution, thet is, all the state probadilides are zero except for
a sirgle st=te,

Our software also supports Boolean equalitypredicates.
These are denoted by angle hrackers <>, For example, if
the predicate a{n) is defined over the domain {red,
green, blue) than<a(n) = green> isa variable over
{true, false} with the dovious dstribition. That is, the
predicate is true with the same praebility that a (n) is
green and is fBlee otherwise.

The next section demonstrates the use of cur software n
diagnosing failts, where sensor data is cepbured across
ordered slices of time Then the following sactim address
isses of parameter fitting with EM- type lemming.

3. Inferenrce in loogy logic

In Rerstingand De Raedt 'swork, inference procesds by
cmstructing an SLD (Selectim nde, Linear resolutim,
Defnite clases) tree (2 selectie liteal resolution system
for definite clauses) and then corverting it into a Bayesian
Network. Loopy logic fllows a similar peth, but instead
coamerts the SLD tree to & Markov field The adventage
of this approach isthet the product dlstrihurions that arise
fromgoals that mifyrwithmu lHdeheads canbe handled in
a completely natiral way. The kegic idea is that random
veriable nodes are generated as goals are found. Cluster
nodes are created as goals are unified with ndes. Tn a logic
program representing a Bayesian Network, the head of a
stateent carresponds to a child node, while the clases
in the body correspond to the nede ‘sparats as shown in
Fig. 1. To construct a Markov figld, loopy logic adds a
cluster node between the childand irsparents. IEmore than
cne raleunifies with the rilehead, then thevariablenode is
cormected to more than one duster node.

As a result of the addition of the cluster nodes, the
grachs that are generared for inference ave Wipartite as
shown InFig. 1. There are two kinds of nodes in these
graphs, the varigble and the cheter nodes. The variakle
nodes hold disodbucions for the random variddles they
defne. The cluster nodes contain joint dstribaicons over

o890
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Fig. 1. The transition of a Bayesian network into an egdvalent Markowv
randcom field.

the veriahles to which they are lirked. Messages between
nodes are imitally sst randomly. On update, the message
from veriakle node V to clisternede C i the normalized
product of dll the messages incoming o V othear than the
message from C. In the other directian, the message from
a cluster node C o a varigkle node V is the produck of
the conditional prokebilify table (local potentdidl) at C

and all the messages to C except themessage from V. This
product israrginalized over the varishle inV before being
sent to V. This process, starting from random messaces,

and itezting uiil corvergence, has been found © be effec—
tive for stochastic inference.

The algorithmworks by starting from a query (Grpossi-
bly a s=t of queries) and gensrating the variddle nodes that
are needed. Bach query is matched ageinst all unifying
heads in the datalase. 211 the ground facts must also be
included In thenetwork. The resultingbodies are then con-
verted to new goals in the search. Loopy lagc islimited in
that the goals produced by this search must be ground
terms, the “Eo=" of the modelad domain, where we st
the prchability of the variskle to ae. Xersting and De
Raedt (2000) place a range restriction on varidbles in tenms:
a veriakle may appear in the head of a rule enly if i alsc
gopears in the body. As a resilt of this reguirerent, &l
facts entailed from the database are ground. By cmtrast,
loopy logic reguires thet all entailed goals be gromd. W e
have found that this requirement makes for better can-
struction of useful modds.

The message passed from a variskle node to a chster
node is the normelized product of all the messages incom~
Ing to the veriskle node other than the message from the
clusternode itlf For example, inFig. 2, themessage from
varisblencde X, to dusternode Y, isthe normalized prod-
uct of incaming messages, say from many duster nodes,
Y., Y, g toX,. In the other divection, the message from
a cluster node Y4 to a verisble node is the product of the
carditianal probaaility tahle (lo=l potential) at the cluster
node and &l the messages incoming o the cluster node
erept the message £rom the varishle node. Before passing
to the variable node, the message ismarginatized based on
the variahle. For example, if the conditional prokaxlity
takle at cisrernode ¥, isP,, then themessage from cluster
ncde Y to varighle node X, is the normalized product of
P, and the message from other veriables nodes X, X,
er. (eoept ;) t© Y. The product tadle isrerginalized
based on X, before passing to X .

Xl Yl X2

Fig. 2. Message passing in locpy logic.



C. Chekrabart et &l. /Expert Systens with Applications 32 {2007) 832~840 835

4. Fault disgnosisusing variants of hidden M a rkov models

We now cansider the application of our stochastdomod-
elirg softwere to failt dagnosis h complex mechanical
systars, such as in the rotor assanblage of Navy heliop-
s, Before discussing the Navy data, we present a sinple
exanple showing how to cmstruct a hidden Markovmodel
{HMM ) 11 our declararive Rayesian logic.

4.1, Exanrple 1: A simple hidden Markov model

In this example, there are two states & ,v). The system
can start In either one, and at each time stgp, cyoleto it==if
cor tarsitim to the other state. The proksbility of these
events isa leamable disodlution. Inboth states, the system
can cutput one of two syrbols & ,b). The conditiaral dis-
tribution for these enissions is also represented in this
model by an adjustabile disilbution.

state <- {x, v}.

emit <- {a, b}.

state(s{N)) | state(N) = State.
emit (N) | state (N) = Emit.

The hidden Markov model works as follows. Each state
Isrepresented with an integer that is zero or the successor
of encther integer. An integer shorthend is implemented
in this systear, ie, 2 iz shorthand for s (s(0)) . T the
model, each stare Iscoditioned on the previous statewith
the learmable distrilbution State . Bach state amits itsout—
put with the lesrmable disodlbotion Emic.

Sricely spesking, because of the represatatiasl fed-
Ll of our stodhastic logic language, the previous four
lires of code ave sUfl cient o spacify ann H M M . The next
five lires are included to demonstrate the udlity of sevaral
of cur other extensions. Note, for example, the definitim
cf the and predicate

observed, o, and <- {true, false}.

and (¥, Y) | X, ¥ = [true, false, false, false].
of{[ 1, N} = true.

o([H|T], W) =and (<emit{N) =H>, (T, s{N)}).
observed (L) = o(L, 0).

Without these lest five lives, one must specify an
chserved sequence by inclhuding in the database a separate
fact for each emission thet isseen. That is, one must state
emit(0) = a,emit(l) =b,emit(2) = b and =0 wm.
With the adlitional five lires, three cbservations can be
included with the predicate observed([a, b, bl ).

A productofHMM s isespressed by adding a new pred-
icate to indicate the states of a second HMM . This new
HMM can be corpled to the edsting one through a prod-
uct distrilution by using the same enit predicate.

Here isan exanple of 2 second H M M with three sabes:

state2 <- {z, ¢, w}.

state2(s(N}) | state2 (N) = Statel.
emit(N) | state2 (N) = Emit2.

Note that the final lire uses the previous erit predicate
wihich crestes the product dstrdbation. As a fnal comment,
our logic-hased stochastic language ofars farmore gawral-
ity than is required to represent simple HMMs ; the next
exanple shows en extension of this appreach.

4.2, Exarple 2: Data amalysis of helicooter rotor systers
using an aute-regressive hidden M arkov model

In the previcus eenple, we presented a sirple HM M
problemand issoluticn inthe OCA ML softwere represen—
taba. In the presant exarmple wemake a much more com-
plex analysis of prognesis in & complex enviromment. The
time-saries data was dbtained from sensors monitoring
heliopter rotors for the United States Navy. The task
wasg to canstruct a quartiiarivemodel of the wholse process
and use it to predict fadlts. Variocus tedhnicues were irves-
tigated for preprocessing the data. Methods of modeling
the gystem included sinple corelative cassifiation as well
as hidden Markov modds Chakrderti, 2005). We al=o
used our Java software with flill recrrsion to replace the
sirple (preser) itemton of the OCAML HMM solution
of Example 1.

The data seswere collectad over a pariod of time during
which a fault was seeded in the mechanicel process. For
example, missing testh n a gear or a crack in the &ive
geft. The sensorswere typlcally thermocouples and vikra-
tian meters that are contimicus and anslog devices. The
data was sampled from the readings and made avwailskle
in digital forrat. Figs. 3 and 4 show such a data sanple.

Ag can be seen in Fig. 3, the raw data is inbactadle,
noigy end unsuitshle for any sort of mathematical or logi-
&l analysis. In order to get a better wnderstanding on the
nature of the data, it proved necessary to look at its fre-
cquency charaecteristics. The frequency spectrum of the data
was calailated using the fast Fouriler transform algordthm.
The data in this form proved mo e tractable as is shown in
Fig. 5.

T . S G et R SN -
(+3 0,2 0.4 a6 0.8 T 1.2 1.4 1.6 1.8 z

Fig. 3. Raw time-series data obtained divectly from mechanicel processes.
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Fig. 3. A “begexy daein’ ' representation of the data computed using
the Fast. Fourier Trans form.

To get rid of artifacts due to nolse in the frequency
domain rawessntation of the data and to cansolidate infor—
mation over time we conputed the mean of sewral such
windows. These processed datasets were considered obsar
vations relevent to the consequent modeling process.

The matharatical oorrelation between doservations was
used as a metric of distance. Using thismetric, aorelation
rlots were computed between Malf the cbservations that
were chosen as trading deta. A significent and stesp drop
in arelation was noticed at samples bunched around a
rerticular point in tire. This point was around two thirds
of the total chservation time away from the st sample.
Assuming that the center point of this lack of corelation
was the point thet the failt derectedstics peaked, the
tire-live was gilit into three regins: Safe, Unssfe and
Faulted.

Using these s=ts of comelatrion plots as our “lemred’’
model about the data and failt process, the other helf of
the dats, the et st was correlated with the training data-
s=r. The kest fit of these new crves to the taining corsla-
tim curves were conputed using the Least Mean Square
metric. With this method the test data was successfiilly
classifisd as Sfe, Unsafe or Faulty.

Dynamic Bayesian networks {DBENs) Dagum, Galper,
& Horowitz, 1992) can ke used 45 a tool tomodel dynamic
systars. More expressive than hidden Ma rkov models
(HMM) and Kalman filter Models (KFM) , they can ke
used to represent other stochastic grepghical models inArti-
Tzl TElligence and Machine Lesrming.

For ourmodel, inorder tolhuildamore raost, wrsatile
and geericmodel than the above axelaticn-classifration
tedrnicue, we decided to explore the use of variants of the
hiddenMarkovmodel { HMM ). The auto regressivehidden
Markov model {AR-HMM) Juang, 1984) proved suitskle
for this purpose. The AR -HMM incorporates a causality
link betwean consequent chservations in time rather than
Just between states and state-deervation peirs. Compata~
daally, itprovides an additiawl path of inference from
chservation of hidden szte. Fig. 6 shows the causality
between states and deervatias at two oconsecutive
instances of time tand t— 1).

The blank cixclss, labeied X are the hidden states of the
system that could be one of {Safe, theafe, Falted}. The
shaded didles lawled ¥ are the chservetios. Before we
apply the algorithm to real tine datawe evaluate the disori-
bution P uX) of expected Frequency sigratres corre-
sponding to the states from a state-laeled dataset. Note
that U = w5, ..., Is the et of doservations that have
been recorded while training the system. Say for example,
ifiy through v, were ckserved when the system gradually
went from safe to faulty we would expect P (y|X = safe)
to be much higher than P iy /X = safe). See Fig. 7 far a
araphical representation of this prokabiliny.

The causal relationships i the AR-HMM are regre-
sented as prcbabi iy dstribarions governed by the llow-
ing equatims:

P(Yt“—“ YJX:= L¥pr = .Yt_l) = P(Yt= YJXti l)
XB(Ye=y]Yer = ve,) (1)

In this design, the prooebility of an observation given a
state is the probalylity of deerving the discrete prior that
is closest © the currant obsarvation, peralized by the dis-
tance between the qurrent chsarvation and the pricr,

Fig. 6. An ato-regressieE M M where X isthe state at time ¢, ¥ . the
dservation of an emit value at time t, The arrows denote the cansal
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\ O msafe /
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P{UIX)
~

el Ll YA
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Fig. 7. Prckebilivy distribarios for sfe, wnsafe and faidlty states.

B(Y.= viX. = § = max(abs{commet(y, 1))
x B(udX = 3 - (2)

Rarther, the probadlity of an coservation at tire t given
ancther particilar chservation at time t— 1 isthe prokebil-
ity of the mo st similar transition among the pricrs peral-
ized by the distance between the axrrent chservation and
the chservation of the previous time sop.

P(Ye=yYer =¥y
= alos( corrooef (Vv 1))
x ((# of u.q tou, trensitias)=
(# of v, doeervetias))
vhere, u, = ar%wX(abS(OOrrODef(Yt;Uﬁ))) (3)

Note thet v, sa contimous verisble and potentislly infi-
nite in range but we Limit it to a tractable s=t of fnite sig-
matures, U, by replacing it by the wy with which it
oorrelates est,

The mlatimship governing the lesmable distribitians is
expressed as fallows:

X <- {safe, unsafe, faulty}.
yi{s{M)) | x(s{N))} =LDL.
yi(s(N)}) |y{(N) =1D2.

Preprocessing the datz and computing the oorrelacion
coefl dents off-dine, we tested the above tecdmique on a
raining s=t of a single seeded failt ocarrence taking the
system from safe to fanlty. Althouch individusl mredictios
rer time slicematched the expected reailts only 80% of the
time, when the predicted states were smoothed over a per—
icd of neighbaring time samples, the system predicted
states of the faulting system with close to 100% acouracy.

5. Learming using loony logic

In this section we demonstrate how parameter learming
can be used in the context of the AR-HMM . Basically,
lesrming is achiewved by adding lesrmalkle distrilhaticns to
Kersting and De Raedt s language (Pless & Luger, 2001,
2003). The lsaming message passing algarithm is based
on the concept of Expectation Macdmization (EM) to est-
mate the learned parameters in the geeral case of models
kalt in the system Chakraterti, 2005).

The epectationmaxdimizaticon (EM) algorithmwas first
discussed by Dempster et dl. (1977) . This algodthm eti-
mates lesming parametars iteratively, startingwith an ini-
tisl guess. Each itmrarion of the algorithm consists of an
epectation step (E step) and a maximization steo (M step).
In the expectation stp, the disdhtions for the wunok-
sarved variakles are based con their known value and the
arrent estimete of the unknown parameters. The masrimi-
zation step re-estimares the parametes. These two steps
contime until they reach their mesrimum likeliheod with
the assumption thet the disoribrion found in the expecta—
tim step is oorrect. A s shown by Dempster et gl {1977),
each ENM iteation incresses this likelihood, unless some
lozl meximum has already been reached.

5.1. Example 3: Parameter fitting using expectation
——

We refimm again to the OCAML rgmesentation for a
sinple example of parameterficting or lesariing. The repre-
senfatione] form fora staterent indicating a leamahle dis-
trbation is a{X) = A. The ‘A&7 Indicates that the
distrihition for a (X)) isto be fitted. The data over which
the learmirng takes place isdbtained £rom the facts and nules
rresanted in the database itdlf. To specify an chservatim,
the user adds a fct (o nile mlaticn) w the database n
which the veriahle X ishound. For exanple, suppose, far
the rule defined akove, the =t of five dhservations (the
bindings for X) are added to produce the datakese:

a{X) =A.

a(dl) = true.
a(d2) = false.
a{dl) = false.
a(dd) = true.
a(d5) = true.

T this case there isa girgle lesrmakle disribtion and
five campletely doserved data points. The resulting distri-
bation for a will be true 60% of the time and false
40% of the time. In this case the varidbles at each data
point are campletely determingd.

In genezl, this is not necesearily required, sirce there
may be learreble disoribatians farwhich there areno drect
cheervatims. But a distrilution can be inferred in the other
cases and used to etimate the value of the adjustskle
paramete, In essaxe, thisprovides the kesis for an expec-
tation maximization Mayraz & Hinton, 2000) stile 2lgo-
rithm for similtaneocusly Infering disodbations and
estimeting their leamzsble parameters. Learning can also
e gplied © conditioal prokbability tables, not just to
variablss with simple priar distrihtios. Furthermare,
learmable distrdbations can be parameterized with veriskles
Just as any other loyic term. For exanple, one might have a
nile:

(rain(X, City) | season{X, City) = R(City))
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This nile indicetes that the probeld ity dstoibation far
rain depends on the season and varies by cty.

5.2. Estanple 4: Iearning In the ootext of a lifeapport
girulation

Nextt we demonstrate lesming In a space station simula~
tim thet mo deled a swell part of an advanced life support
system. The soerio Irmvolves the irterection between the
power sub-system and the life suppart system on a remote
base statim. The power suoply is dependent on an
unknown extermsl force and fluctuates. Life support has
anunber cf sres; {normal, shessed, aritdcal), that depend
on power avedlddility, demand, activity and locaticn.

The similation assumes one astronagt, The consunp-
tin of life support resoorces is a functian of the astro-
rect’s esrtion leel and loation. Qur geal is to leam
the model and predict the state of the life suppart system.
Given that life suppcrt is dependent on power and con-
suptim, we have a leamahile distllutio, where N is
the time step and LS is the learreble distribation:

life support (N)
=15.

| power (N) , consumption (N)

The gate of power can be monitored from voltage out-
put, which can be in elther of five states from very high to
very low, {vh, vmh, vm, vinl, v1}.W e learn the distrito-
tim, LS by first watching emission from life support that
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power_emit (10) = vh

power_emit (11) = vmh
power emit (12) =vh
power_emit(13) =vh
power_emit {14} =vh

ls_emit (1) = danger
ls_emit (2) = danger
ls_emit (3) = danger
ls_emit (4) = warning
ls_emit (5) = ok
ls_emit (6} = ok
ls_emit (7) = ok
ls_emit (8) = ok
ls_emit (9) = ok
ls_emit (10) = warning
power_emit(l} = vml
power_emit (2} = vml
power_emit(3) = vm
power_emit (4} = vmh
power_emit (5) = vmh
power _emit(6) = vh
power_emit (7) = vh
power emit (8) = vh
power_emit(9) = vh

(

Here are sane doservations from the life support system:

will yaise slerts, {0k, warning, danger} .Atsome point person_act:[.VJ..ty(l) = hj,' exert
life support emisgios may end, ut we il need to know person_ac:t:f,VJ-.ty(Z) = hl exert
the state of the 1ife support systan. We can do this using person__act:}v%ty (3) =normal
the lest Gisribition, LS. person_act:_r.v:'.ty(ﬁl) = normal
person_activity (5} = normal
person_activity(6) = sleep
consumption(N) | person_activity (N), person_activity(7) = sleep
person_Jlocation () = [---]. person_activity (8) = sleep
life_support <- {normal, stressed, person_activity(9) = normal
critical}. person_activity(10) = hi exert
lg_emit <~ {ok, warning, danger}. person_activity (11) = hi exert
power <- {high, medium, low]}. person_activity (12) = hi exert
power_emit <- {vh, vmh, vm, vml, v1}. person_activitcy (13) = hi exert
person_activity <=~ {sleep, ncrmal, person_activity(14) = hi exert
hi_exert}. person_location(l) = cut
person_location <- {in, out}. person_location(2) = out
consumption <- {low, med, high}. person_location(3) = in
consumption {N) | person_activity (N}, person_location(4) in
person_location(N) = [[[0.7, 0.2,0.1], [C.3, person_location(5) = in
¢.5, 0.2]1, [[0.2, 0.5, 0.3], [0.8, 0.2, 0.2]7, person_location(é) = in
[[0.2, 0.5,0.3], [0.1,0.2,0.7111. person_location(7) =in
life _support (N) | power (N), consumption (N) person_location(8) = in
= LS. person_location (9} =in
life support(N) | ls_emit(N) = [[0.7, 0.2, person_locaticn(1l0) = out
0.1], [0.2, 0.6, 0.21, (0.1, 0.2, 0.71]. person_location{11) = out
power (N) | pewer_emit(N) = [[0.7, 0.2, .11, person_location(12) = out
[0.6, 0.3, 0.1]., [0.2, 0.6, 0.2], [0.1, 0.3, person_location{i3) = out
0.e], [0.1, 0.2, 0.71]. person_location(i4) = cut
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We beginthesimilatimat time = 1 with lfesupport in
artical conditdon, power sugply low, astronaut outsids and
in a s@te of high exertim. The power suply stabilizs
arcound time = 6, and at the same time the astranaut goes
to slesp. He later wakes up, begins high esrtion activity
and ventures cucside. The power remains stzhle, exept
for a glight dip at time = 11. The life support avissicns
end at time = 10 . Thereafter, the state of the system must
be determined from the learmt distwihtion, LS. Table 1
shows the likelihood of states at each time step. The system
detexmires that the state of life support after time step 10,
when the astronaut isoutside and exhibiting high eertian,
ismore lilely to be in s=te {stressed) . This seens a
logical inference because when the astronaut was in high
aertion and the power lssl was low, the smate of life sup-
port wes {criticall. The high amountof exrtion has
likely put the life sipport system in a soessed s=e, but
siroe power output isAlll, it isnot reeching a ariticsl sz,
Algo note thet at time = 11, when the power output
dipped dightly, the likelitood of beirg in s=te criticl
was at ishighest level since time = 3.

Life support system smkes:

In cottrast, we run another modified program where
alter the astronaut wakes wp, he begins normal activity
insice, as opposed to high eertion adtivity aiside, with
results displayved in Table 2. T thiis case, the network oo

Table 1
Prawirlities of life support: system state at time steps 1-14
Time Normal Stressed Critical
1 o] 0 1
2 Q 4] 1
3 Q 9] 1
4 ¢l 0.77 0.23
5 G.74 0.14 0.12
5 0.82 0.02 0.06
7 0.83 0.01 0.06
8 0.%6 0.03 0.04
5} (.95 ¢ C.05
10 0.11 0.78 0.11
11 0.21 0.49 0.3
12 0.23 0.53 0.24
13 0.24 0.54 0.23
14 0.23 0.53 0.26
Takle 2

States of lifesupport. systenwhen person_activity iskept atnormal
and perscn_location iskept at in

Time Normal Stressed Oritdical,
10 0.26 0 0.04
11 Q.69 o 0.31
12 0.76 c 0.24
13 0.76 2] 0.24
14 C.76 4] 0.24

rectly infers that life support: ismore likely to ke ina ner—
mal s=e.

These results demonstrate loopy logic's deility to leamn
and resson inuncertain sinetions. In this ase, the wncer—
tainty Iswhich state the life support system is in after life

support emissions has stogpeed.
person_activity(10) = normsl.
person_activity (11} = normal.

)

)
person_activity(1l2) = normal.
person_activity (13} = normal.
perscn_activity(1l4) = normal.
person location{10) = in.
person_location{ll) = in.
person_location(l2) = in.
person_location(13) = in.
person_location(14) = in.

To summarize, EM lexmning tskes the form of parame-
terftting. A distrdbitrion can be used o estfmate the value
of the learrabieparamster. Using our DBAY E S algorithm,
leaming can &also be applied to onditicnal probebility
teldles, not Just to variables with sinple pricr distdhations.
Learnable distribations can be parameterized with vari-
ables just as any other logic term.

Inthe AR-HMM , we lezrn the transition probakilities
between the 3 states: ssfe, wnsafe and faulted. This distribe-
tim may not be known at the begirming of eperimental
testirg. Hence, we can model this distritution as a leam-
able disodhotion in which we approximare the trasition
praeebility by coserving a large set of the training data.

A more camplete sparification of the OCAML based
reresentation for leeming and the loopy belief propaga-
tion inference system may be found in Pless and Luger
(2001, 2003).

6. Summary and conclusias

We have crested a logic-rased stochasticmodeling lan-
guage that has the capability to handle complex sinerions
with refitive struchire. Since the language isreoarsive, it
ispossible to uild and analyze models that are ramresented
v a potentially irfinite s=t of databases. The US Navy has
provided us with sensor data from heliapter rotor systers
that have this propergy. Mo d&ling potetially inflnite dat
gkases means that we can ff dently regresent tire-series
rrocesses and verious different Forms of Markov models.

A wEll-known and effective inference algorithm, loopy
kelief propagation Fesrl, 1988), sugports inference in our
language . Within this first-arder legic-kased stechasto lan—
guage the cambination rule for complex goal support isthe
product dstrihitio. Fimally, a form of EM parameter
lesming is supported maturally within this logping infer-
ence framework. From a larger perspactive, each type of
logic (deductive, abductive, and inductive) can be mapped
to elements of cur dedlarative stodnastic language: The
ekility to represent rules and chains of rules is equivalent
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to deductive reascning. Prokebilistic inferance, particilarly
from symptoms to causes, rawesents an exanple of abduc-
tive inference, and leawning through fitting parameters to
known data s¥s, is & form of inducti.

In this paper we demonstrated a achal applicatio of
fault diagresis n conplex mechanicsl systers. We have
modeled raw time swies dataas an AR-HMM . W e used
recarsion within our infererxe scheme to regresent the
AR-HMM as well to infer and calalate the transitim
probabilities between states. We used this knowledge to
Infer the probakility of futae falts. W e achieved a hich
accuracy in this process. W e also demonstrated how loogy
lepic can perform lesming inthe context of the AR - HMM .
Tins, this gpclication demonstrates the power of a first-
crder stochastic system to reoresent and reason with com-
rplexmo dals and potentislly inflnire time-series data.

An ongeling effort in this resesvch isto integpate into the
Language the samentics of making czlls to extarral comput-
ing tools likeMATLAB or other livary uHlides by provid-
ing syntactical support inthe largusge it=lf. When desling
with complex and intractaiile data formats, like time sodes
data and RGB imeges, becomes cunbersome to perform
mathematics] transforns or camputations using the frse-
order system its=lf At these functhires, we find itusefil to
cutsourees tis job to an off-the-chelf system 1ileMATL AR
or some other suitakdielilrary far cperations likecorralation,
data fommat translation, and normealizton. The first~rder
system can deal well with discrete or multinomial data but
ismnot suited to deal with resl valued or non-discrete data.
The @1l and retirn of such extarmal computatim should
be seanless and somewhat transparent to the modeler.

Ancther direct-ian for developing our stochasticmo &el-
ing language is to extend it to inclide continuous random
verisbles. We alsoplan to extend lesming from parameter
fitting to il model indxtiom. Getoor e al. (2001) and
Segl, Koller, and Ormanelt (2001} considermodel indue-
tion in the contesxt: of more taditional Bayesisn Belief Net-
works and Angelopoulos and Cussens (2001a, 2001b) and
Cussens (2001) in the area of Constraint Logic Program-
ming. Finally, the Inductive Logic Programming commg -
nity ™ uggletan, 1994} also addressed the learming of
structhime with declarative stochastic reresentarias. We
plan on taking a corbination of these approaches.
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